Questo sito utilizza cookie tecnici e di terze parti. Se vuoi saperne di più o negare il consenso consulta l'informativa sulla privacy. Proseguendo la navigazione o cliccando su "Chiudi" acconsenti all'uso dei cookie. Chiudi
vai al contenuto vai al menu principale vai alla sezione Accessibilità vai alla mappa del sito
Login  Docente | Studente | Personale | Italiano  English
 
Home page

OPERATIONS RESEARCH

Degree course Electronic Engineering
Curriculum Curriculum unico
Learnings Orientamento unico
Academic Year 2018/2019
ECTS 6
Scientific Disciplinary Sector MAT/09
Year Second year
Time unit Second semester
Class hours 48
Educational activity Educational activities chosen by the student (art.10, paragraph 5, letter a)

Single group

Supplying course 1000276 Ricerca operativa in Ingegneria Informatica e dei sistemi per le Telecomunicazioni LM-27 COTRONEI MARIANTONIA
Professor Mariantonia COTRONEI
Objectives The aims of the course are: to present the main methods of Operations Research as tools for modelling and solving decisional problems; to develop student’s capabilities to create the mathematical model of a real optimization problem and to identify the proper algorithm to solve it.
Programme INTRODUCTION TO OPERATIONS RESEARCH
Introduction to optimization problems and their formulation as mathematical models. Mathematical programming. Applicative examples.

LINEAR PROGRAMMING
Introduction to linear programming. Geometry of linear programming. Vertices and basic feasible solutions. Simplex method. Optimality test, two-phase method, convergence, degeneration. Dual problem. Dual simplex algorithm. Sensitivity analysis.

INTEGER LINEAR PROGRAMMING
General formulation. The transportation problem. Cutting-plane algorithms. Gomory cuts. Branch & bound algorithm. The knapsack problem.

GRAPH OPTIMIZATION
Oriented and non-oriented graphs and their representations. Minimum spanning trees: Kruskal’s and Prim’s algorithms. Shorthest path problems: Dijkstra’s and Floyd-Warshall algorithms. Network flow problems. Max-flow/Min-cut problems: Ford-Fulkerson algorithm.

NONLINEAR PROGRAMMING
Some classes of nonlinear problems. Convex functions and conditions of existence for optimal solutions. Optimality conditions for nonconstrained problems. Descent methods. Wolfe conditions. Line search algorithms: bisection, golden ratio, Armjo methods. Algorithms for nonconstrained optimization: gradient, Newton, quasi-Newton, conjugate gradient methods.
Optimality conditions for constrained problems. Karush-Kuhn-Tucker conditions. Introduction to methods for nonlinear constrained optimization: quadratic programming, penalty, augmented lagrangian, SQP methods
Books A. Colorni, Ricerca Operativa, Zanichelli.
M. Fischetti, Lezioni di Ricerca Operativa, Edizioni Libreria Progetto, Padova.
F.S. Hillier, G.L. Lieberman, Introduzione alla Ricerca Operativa, Franco Angeli Editore.
C. Vercellis, Ottimizzazione: Teoria, metodi, applicazioni, McGraw-Hill.
F. S. Hillier and G. J. Lieberman, Introduction to Operations Research, McGraw-Hill
Traditional teaching method Yes
Distance teaching method No
Mandatory attendance No
Written examination evaluation No
Oral examination evaluation Yes
Aptitude test evaluation No
Project evaluation Yes
Internship evaluation No
Evaluation in itinere No
Practice Test No

Further information

No document in this course

Office hours list:

Description News
Office hours by: Mariantonia Cotronei
Martedi' 10-12
No news posted
No class timetable posted
Via dell'Università, 25 (già Salita Melissari) - 89124 Reggio Calabria - CF 80006510806 - Fax 0965 332201 - URP:Indirizzo di posta elettronica dell'ufficio relazioni con il pubblico- PEC:Indirizzo di posta elettronica certificata dell'amministrazione
Feed RSS Facebook Twitter YouTube Instagram

PRIVACY - NOTE LEGALI - ELENCO SITI TEMATICI