Questo sito utilizza cookie tecnici e di terze parti. Se vuoi saperne di più o negare il consenso consulta l'informativa sulla privacy. Proseguendo la navigazione o cliccando su "Chiudi" acconsenti all'uso dei cookie. Chiudi
vai al contenuto vai al menu principale vai alla sezione Accessibilità vai alla mappa del sito
Login  Docente | Studente | Personale | Italiano  English
 
Home page

ANALISI MATEMATICA I

Corso Ingegneria dell'Informazione
Curriculum Curriculum unico
Orientamento Orientamento unico
Anno Accademico 2015/2016
Crediti 9
Settore Scientifico Disciplinare MAT/05
Anno Primo anno
Unità temporale Primo semestre
Ore aula 72
Attività formativa Attività formative di base

Canale: A-L

Docente LUISA ANGELA MARIA FATTORUSSO
Obiettivi Scopo del corso è quello di fornire le conoscenze di base del calcolo differenziale e integrale per funzioni reali di una variabile reale, dei numeri complessi e delle serie numeriche, necessari alle applicazioni alle materie ingegneristiche.
Si forniscono, inoltre, gli strumenti necessari per impostare ed analizzare, con il metodo logico-deduttivo, un problema matematico.
Programma N.D.
Testi docente N.D.
Erogazione tradizionale No
Erogazione a distanza No
Frequenza obbligatoria No
Valutazione prova scritta No
Valutazione prova orale No
Valutazione test attitudinale No
Valutazione progetto No
Valutazione tirocinio No
Valutazione in itinere No
Prova pratica No

Ulteriori informazioni

Nessun materiale didattico inserito per questo insegnamento

Elenco dei ricevimenti:

Descrizione Avviso
Ricevimenti del docente: Luisa Angela Maria Fattorusso
Nei mesi di Marzo ed Aprile 2017 faro' ricevimento studenti ogni lunedi' dalle 14 alle 15 in Aula f1-Comunicazioni di eventuali variazioni saranno inviate per mailing list.
Ricevimenti del docente: Luisa Angela Maria Fattorusso
Si avvertono gli studenti che per tutto il primo semestre dell'AA 2016/2017 a partire dal 10 Ottobre il mio ricevimento si svolgera' con il seguente orario:
Giovedi' 10-11
Ricevimenti del docente: Luisa Angela Maria Fattorusso
Ricevimento studenti corso di Analisi Matematica 1 (Ing. Informazione)A-L e corsi Analisi Mat.1 e 2 (Ing.Inf.) anni precedenti;
Lunedì 10-11 ( a partire dal 5 Ottobre)
Venerdi' 11-12
Nessun avviso pubblicato
Nessuna lezione pubblicata

Canale: M-Z

Docente SOFIA GIUFFRE'
Obiettivi Scopo del corso è quello di fornire le conoscenze di base del calcolo differenziale e integrale per funzioni reali di una variabile reale, dei numeri complessi e delle serie numeriche, necessari alle applicazioni alle materie ingegneristiche.
Si forniscono, inoltre, gli strumenti necessari per impostare ed analizzare, con il metodo logico-deduttivo, un problema matematico.
Programma I numeri e le funzioni reali.
Concetti di base di teoria degli insiemi. Nozioni di logica. Insiemi numerici: richiami sui naturali, relativi, razionali. Principio di induzione. Relazioni d'ordine. Numeri reali: ordinamento e completezza. Elementi di topologia. Concetto di funzione. Funzioni iniettive, suriettive, biunivoche. Funzione inversa, funzione composta. Funzioni elementari. Funzioni limitate, illimitate, monotone, periodiche. Estremi inferiore e superiore di funzioni. Massimi e minimi assoluti di funzioni. (1,5 CFU)

Continuità di funzioni reali di variabile reale.
Definizione di limite. Limite destro, Limite sinistro. Esistenza del limite. Asintoti. Algebra dei limiti. Casi di indeterminazione. Teorema di unicità del limite. Teorema della permanenza del segno. Teorema del confronto. Limiti notevoli. Limiti di funzioni monotone. Infinitesimi ed infiniti. Principio di sostituzione. Definizione di funzione continua. Punti di discontinuità e loro classificazione. Continuità della funzione composta. Teorema di Weierstrass.Teorema dei valori intermedi. Criterio di invertibilità. Teorema di esistenza degli zeri. Continuità della funzione inversa. Uniforme continuità. Teorema di Heine-Cantor. Funzioni lipschitziane e caratterizzazione.(2 CFU)

Calcolo differenziale per funzioni di una variabile.
Definizione di derivata e significato geometrico. Punti angolosi e cuspidi. Derivate di funzioni elementari. Operazioni con le derivate. Derivabilità e continuità. Teorema di derivazione della funzione composta. Teorema di derivazione della funzione inversa e applicazioni. Derivate di ordine superiore. Massimi e minimi relativi. Punti critici. Teorema di Fermat. Teoremi di Rolle, Lagrange, Cauchy. Interpretazione geometrica e conseguenze del Teorema di Lagrange. Teorema di De L'Hôpital. Differenziale di una funzione. Concavità e convessità. Flessi. Formula di Taylor e applicazioni. Resto di Peano. Resto di Lagrange. Studio del grafico di una funzione. (2.5 CFU)

Calcolo integrale.
Partizione di un intervallo. Teoria dell'integrazione secondo Riemann. Integrale definito. Classi di funzioni integrabili. Funzione di Dirichlet. Somme integrali di Riemann. Proprietà dell'integrale definito ed interpretazione geometrica. Teorema della media. Teorema fondamentale del calcolo integrale. Primitive. Integrale indefinito. Metodi di integrazione. Dominio normale. Calcolo di aree di domini piani. Integrali impropri. Criteri di integrabilità. (1,5 CFU)

Numeri complessi
Forma algebrica, forma trigonometrica e forma esponenziale di un numero complesso. Operazioni tra numeri complessi, formule di De Moivre. Radici n-esime di un numero complesso. Formule di Eulero. (0,5 CFU)

Successioni e serie numeriche
Successioni reali. Limite di una successione. Teorema del limite delle successioni monotone. Limiti notevoli. Serie numeriche convergenti, divergenti, indeterminate. Convergenza secondo Cauchy. Serie geometrica, serie di Mengoli, serie armonica. Serie a termini non negativi: criterio del confronto, del rapporto, della radice. Serie assolutamente convergenti. Serie a termini di segno alterno. Teorema di Leibnitz. (1 CFU)


Testi docente M. Bramanti, C.D. Pagani, S. Salsa, Analisi matematica 1, Zanichelli.
P. Marcellini, C.Sbordone, Elementi di Analisi Matematica I, Liguori Editore.
P. Marcellini, C.Sbordone, Esercizi di Matematica Volume I (tomo 1-2-3-4), Liguori Editore.
M. Bramanti Esercitazioni di analisi matematica 1, Esculapio Editore.

Testo di consultazione
C.D. Pagani, S. Salsa, Analisi matematica 1, Zanichelli.
Erogazione tradizionale Si
Erogazione a distanza No
Frequenza obbligatoria No
Valutazione prova scritta Si
Valutazione prova orale Si
Valutazione test attitudinale No
Valutazione progetto No
Valutazione tirocinio No
Valutazione in itinere Si
Prova pratica No

Ulteriori informazioni

Nessun materiale didattico inserito per questo insegnamento
Nessun avviso pubblicato
Nessuna lezione pubblicata
Salita Melissari - 89124 Reggio Calabria - CF 80006510806 - Fax 0965 332201 - URP:Indirizzo di posta elettronica dell'ufficio relazioni con il pubblico- PEC:Indirizzo di posta elettronica certificata dell'amministrazione
Feed RSS Facebook Twitter YouTube Google+

PRIVACY - NOTE LEGALI